DNS/LES Simulations of Separated Flows at High Reynolds Numbers
نویسنده
چکیده
Direct numerical simulations (DNS) and large-eddy simulations (LES) simulations of flow through a periodic channel with a constriction are performed using the dynamic Smagorinsky model at two Reynolds numbers of 2800 and 10595. The LES equations are solved using higher order compact schemes. DNS are performed for the lower Reynolds number case using a fine grid and the data are used to validate the LES results obtained with a coarse and a medium size grid. LES simulations are also performed for the higher Reynolds number case using a coarse and a medium size grid. The results are compared with an existing reference data set. The DNS and LES results agreed well with the reference data. Reynolds stresses, sub-grid eddy viscosity, and the budgets for the turbulent kinetic energy are also presented. It is found that the turbulent fluctuations in the normal and spanwise directions have the same magnitude. The turbulent kinetic energy budget shows that the production peaks near the separation point region and the production to dissipation ratio is very high on the order of five in this region. It is also observed that the production is balanced by the advection, diffusion, and dissipation in the shear layer region. The dominant term is the turbulent diffusion that is about two times the molecular dissipation.
منابع مشابه
Study of Parameters Affecting Separation Bubble Size in High Speed Flows using k-ω Turbulence Model
Shock waves generated at different parts of vehicle interact with the boundary layer over the surface at high Mach flows. The adverse pressure gradient across strong shock wave causes the flow to separate and peak loads are generated at separation and reattachment points. The size of separation bubble in the shock boundary layer interaction flows depends on various parameters. Reynolds-averaged...
متن کاملActive Control of Turbulent Channel Flows Based on Large Eddy Simulation
Advances in high-performance computing and Large-Eddy Simulation (LES) have made it possible to obtain accurate solutions of complex, turbulent flows at moderate Reynolds numbers. With these advances, computational modeling of turbulent flows in order to develop, evaluate, and optimize active control strategies is feasible. In this paper, we present approaches to numerical modeling of oppositio...
متن کاملLarge Eddy Simulation and Turbulence Control
This paper reviews LES methods, based on the dynamic subgrid-scale model, that greatly improve the efficiency of turbulence control simulations in the context of drag reduction for plane turbulent channel flow. We begin by performing simulations of opposition control at Reynolds numbers in the range Reτ = 100 to 590 which demonstrate a decrease in effectiveness of this control strategy with inc...
متن کاملDirect Numerical Simulation and Large-eddy Simulation of Wake Vortices: Going from Laboratory Conditions to Flight Conditions
This paper aims at presenting DNS and LES as applied to the simulation of vortex wakes: in laboratory conditions (moderate to medium Reynolds numbers) and up to real aircraft conditions (high to very high Reynolds numbers). Only incompressible flows are considered. DNS and LES are able to capture complex 3-D physics provided one uses high quality numerical methods: methods with negligible numer...
متن کاملOn LEM/LES Methodology for Two-Phase Flows
A two-phase subgrid combustion model developed earlier has been evaluated for applicability in largeeddy simulations (LES). Direct Numerical Simulations (DNS) of two-phase isotropic turbulence in the presence of passive, momentum-coupled and vaporizing droplets has been extensively studied to form a base-line database. Current DNS results agree with earlier studies and show that the presence of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015